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Riassunto: Scopo di questo lavor® proporre un indice globale di b@ndell’adattamento

per i modelli ad equazioni strutturali stimati mediante il metodo PLS. Al momento gli in-
dici comunemente utilizzati in questo ambito sono la comuadbbni di adattamento
del modello esterno) e la ridondanaza (g@adiel modello interno). Si propone un indice
che, alla stregua del test del chi-quadro e dei test ad esso collegati disponibili nel modello
classico LISREL stimato mediante la massima verosimiglianza, fornisca una misura glo-
bale della bor#t di adattamento del modello che tenga conto di entrambi gli aspetti, mi-
surati invece separatamente dalla comuadaitalla ridondanza. E’ inoltre suggerita una
procedura di validazione non parametrica per l'indice proposto. Un’applicazione su dati
realie infine presentata.
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1. Introduction

Here we suggest a global goodness—of-fit index for a structural equation model estimated
by PLS, Chateliret al. (2002). Commonly used indexes, communality or redundancy,
refer separately to the reconstruction of the measurement model and the structural model.
Here we suggest an index that, similarly to the-based indexes applied in LISREL,
yields a measure of the global goodness—of—fit as it is a compromise between communa-
lity and redundancy.

2. The proposed index

Let X, Xy,..., X be J blocks of manifest variables each madeby; = 1,2,...,J
variables. Within PLS approach we search.fdatent variabley; = X;a; so asto be as
highly correlated as possible with their own blocks and, for the endogenous.Braesg

whole), also with their adjacent latent variables. We can define the following infﬂégg,
for evaluating the global goodness—of—fit of the model:

% J:yjendogenous

GF =
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wherer?®(x;;,y;) andR*(y;; y;1,- - .. ¥, ) are squared correlation coefficients.
This index recalls optimization criterion for PLS regression (Tenenhaus (1998)): given
two blocks,X; andX;, Tucker criterion searches for two vectarsanda, such that:

max{a} X X; X)X a; }

a;7al 2
aa; = 1 (2)
aja; =1

The maximization of (2) is equivalent to the maximization of the squared covariance
betweenX ;a; andX,a;: cov?(X;a;, Xja;) = r?(X;a;, X;a;)var(X;a;)var(X,a;). Sim-
ilarly to the criterion by Tucker —that searches for a compromise between the optimal
approximation of each variable block, separately considered, and the optimal reconstruc-

tion of the relationship between the two blocks— e’ gives a goodness-of-fit index
which integrates the two aspects in the PLS approach to structural equation modeling. In

the following we motivate this statement. First of all we note that a normalizatiGheor
is possible by relating each term in (1) to the corresponding maximum value. We now
consider the maximation of the terms separately.

3. Maximization of the two terms in GF~

For clarity sake, let us focus on one of tliananifest variable blocks, sa¥;. As well
known in principal component analysis, the best rank 1 approximatiad;as given
by the eigenvecton;;, associated to the largest eigenvalye of X, X;; u;; andXjuj;
are respectively the first factor and the first principal componeX pf Furthermore,
Vi=1,2,....,JandVi =1,2,...,p;: > 7 r? (x;iy;) is @ maximum iffy; = X;u;;.

Then, —if the data are mean centered and with unit variance— the first term in (1) is
such thaty "% 72 (x;i,y;) < Aj1. If in this expression, the equality sign holds for all
each componerXa; is maximally correlated with its own block. Then, two alternative

normalized versions of the first term GfF2 are:
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Let us now consider a partition of the manifest variable set which consists of Klgan
one side, and the super block made by the manifest variables whose latent variables are
explanatory ofy;, sayX;. We search for two unit vectoes anda; such that the squared
correlation coefficient betweeX;;a; andX-a; is a maximum.

As well known in canonical correlation analysis, anda; are the eigenvectors re-
spectively ofX’X5(X2X7) 71X X; and (XEX5) THXEX (X X;) 71X X5 corresponding
to the largest common eigenvalp%: the squared correlation coefficient betwepm,
andX;aj.

In the special case whefg = 1, that isX; reduces to a column vectot;, we have
a; = cijjf.(X%X;)—lX%xj andp% = xjxj(X%Xj)—ngxj (xx;)~", wherec is a proper




constant. Therp% is the multiple correlation coefficient between the variablend the

manifest variables of th}'eth (exogenous) block.

In a more general situatioR? (yj;yjl,yjz, . ,yjk,j) < p?, wherep, is the first
canonical correlation of the canonical analysis of maXixand [X;i, X;s, ..., X, ].
When in the above expression the equality sign holds foj,a#hdogenous latent vari-
ablesy; are maximally correlated to their adjacent latent variables. Then, two alternative

. . ~ .2
normalized versions of the second termf" are:
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By combining equations (3) and (5) or equations (4) and (6) we obtain two differ-
ent normalized goodness-of-fit indexes yielding the same result and ranging between 0
and 1: GF? = T2 T} = T4TZ, . The geometric mean df,; andTy;, namedG F (i.e.
Goodness-of-Fit index), is used because it can be interpreted similarly #@*threex
in a regression framework. In the following, we referGd@ and toGF’ as the sample
estimates of, respectivelg /" andG 2.

4. A non—parametric procedure for validating the index

If we are interested in the interval estimate @f", or GF?, we can apply a non-

parametric procedure. Létx be the empirical cumulative distribution function (cdf)
of X = [Xy,Xa,...,X,]. In the following we directly considet /" but all statements

can be well referred t&/F2.

1. Draw B random samples fromx and forb = 1,2,....B computeGAF(b), i.e. for
each bootstrap sample, perform a PLS estimation of the same structural model that
yieldedGF and compute the corresponding index.

2. The cdf of the Monte Carlo approximatidzf; of the bootstrap distribution ¢ F

is yielded by the bootstrap estima(é%?(b). The distribution is estimated under the

hypothesis?F = G'F and approximated by means Bfbootstrap samples.
A confidence interval with nominal confidence level 2« is [@é@(a}, @é’?g(l — )]
i.e. thel00a% and thel00(1 — «)% percentiles oﬁ)ég),. In order to heuristically verify
whether the observe@F is significantly greater than 0, we can check if the above interval
does not include 0.
In order to perform a non—parametric hypothesis testing-éhwe need to set hy-
potheses on one or more coefficients of the structural model:

Ho:ﬁij:() vS. HO:ﬁij3£O (7)

wheref;; is the PLS coefficient in the structural equation linkingo y ;.



In order to perform a non—parametric hypothesis testing we need to properly transform
X and define an empirical cdfx- such that the null hypothesis,Hholds. LetX? =
X; —X;(X!X;)"'X!X; be the part oK ; not due taX;; finally X* = [X;, X, ..., X;_1,
X5, Xy -5 Xy

Similarly to the cdf@fﬁ, a Monte Carlo,@fi), approximation of the bootstrap cdf

of GF under the null hypothesis in (7), can be estimated. According to a nominal sig-
nificance levell00a% H, can not be rejected @( (1 — «a) > GF. Furthermore, the
achieved significance IeveI (prvalue) of the test can be computed as the proportion of

B bootstrap estlmate(S’F Iower than the observedF. As a rule of thumb, a-value
less than or equal to 0.025 gives a strong evidence agajnst H

Notice that if the density distribution functions correspondlng)é@, or <I> ) are not

symmetric, bias—corrected and accelerated'() bootstrap percentiles can be computed,
Efron and Tibshirani (1993).

By generalizing the hypothesis in (7) to all coefficients of all structural equations, the
hypothesis7F' = 0 againstGF' > 0 can be tested.

5. Application to real data and conclusions

The suggested goodness—of—fit index has been applied to Russet data by referring to
the structural model shown in Tenenhaus (1999). The analyzed data consist of 3 manifest
variable blocks.X;: GINI, FARM and Ln(RENT+1);X,: Ln(GNPR) and Ln(LABO);

X3: EXp(INST-16.3), Ln(ECKS+1), Ln(DEAT+1), DEMOSTAB, DEMOINSTAB and
DICTATUR. The measurement model is defined as:

th:’ﬂ-lhgl—i_glh? h:1727""3
Xop, = Moo +€9p, h=1,2
X3y = m3p€3 +e3n, h=1,2,...,6

while the structural model is given by = (31& + (3282 + €3. Finally, mode A for
external estimation and factorial scheme for internal estimation are chosen.

The global index is7F = 0.989 x 0.610 = 0.603 and, consequently; F' = 0.778
meaning that the model is able to take into account 78% of the achievable fit.

The obtained results are shown to be statistically significant by the non—parametric
procedure suggested above.

The proposed normalized index can be well applied also to compare performances
yielded by PLS and LISREL when both feasible on the same model.
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