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Riassunto:Scopo di questo lavoròe proporre un indice globale di bontà dell’adattamento
per i modelli ad equazioni strutturali stimati mediante il metodo PLS. Al momento gli in-
dici comunemente utilizzati in questo ambito sono la comunalità (bont̀a di adattamento
del modello esterno) e la ridondanaza (qualità del modello interno). Si propone un indice
che, alla stregua del test del chi-quadro e dei test ad esso collegati disponibili nel modello
classico LISREL stimato mediante la massima verosimiglianza, fornisca una misura glo-
bale della bont̀a di adattamento del modello che tenga conto di entrambi gli aspetti, mi-
surati invece separatamente dalla comunalità e dalla ridondanza. E’ inoltre suggerita una
procedura di validazione non parametrica per l’indice proposto. Un’applicazione su dati
reali è infine presentata.
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1. Introduction

Here we suggest a global goodness–of–fit index for a structural equation model estimated
by PLS, Chatelinet al. (2002). Commonly used indexes, communality or redundancy,
refer separately to the reconstruction of the measurement model and the structural model.
Here we suggest an index that, similarly to theχ2–based indexes applied in LISREL,
yields a measure of the global goodness–of–fit as it is a compromise between communa-
lity and redundancy.

2. The proposed index

Let X1,X2, . . . ,XJ beJ blocks of manifest variables each made bypj, j = 1, 2, . . . , J
variables. Within PLS approach we search forJ latent variablesyj = Xjaj so as to be as
highly correlated as possible with their own blocks and, for the endogenous ones (J ′ as a
whole), also with their adjacent latent variables. We can define the following index,G̃F
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,

for evaluating the global goodness–of–fit of the model:
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wherer2(xij,yj) andR2(yj;yj1, . . . ,yjkj
) are squared correlation coefficients.

This index recalls optimization criterion for PLS regression (Tenenhaus (1998)): given
two blocks,Xj andXl, Tucker criterion searches for two vectorsaj andal such that:

max
aj ,al

{a′jX′
jXlX

′
lXjal}

a′jaj = 1
a′lal = 1

(2)

The maximization of (2) is equivalent to the maximization of the squared covariance
betweenXjaj andXlal: cov2(Xjaj,Xlal) = r2(Xjaj,Xlal)var(Xjaj)var(Xlal). Sim-
ilarly to the criterion by Tucker —that searches for a compromise between the optimal
approximation of each variable block, separately considered, and the optimal reconstruc-
tion of the relationship between the two blocks— thẽGF

2
gives a goodness-of-fit index

which integrates the two aspects in the PLS approach to structural equation modeling. In
the following we motivate this statement. First of all we note that a normalization ofG̃F

2

is possible by relating each term in (1) to the corresponding maximum value. We now
consider the maximation of the terms separately.

3. Maximization of the two terms in G̃F
2

For clarity sake, let us focus on one of theJ manifest variable blocks, sayXj. As well
known in principal component analysis, the best rank 1 approximation ofXj is given
by the eigenvectoruj1 associated to the largest eigenvalueλj1 of X′

jXj; uj1 andXjuj1

are respectively the first factor and the first principal component ofXj. Furthermore,
∀j = 1, 2, . . . , J and∀i = 1, 2, . . . , pj:

∑pj

i r2 (xjiyj) is a maximum iffyj = Xjuj1.
Then, —if the data are mean centered and with unit variance— the first term in (1) is

such that
∑pj

i r2 (xji,yj) ≤ λj1. If in this expression, the equality sign holds for allj,
each componentXjaj is maximally correlated with its own block. Then, two alternative

normalized versions of the first term of̃GF
2

are:
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Let us now consider a partition of the manifest variable set which consists of blockXj, on
one side, and the super block made by the manifest variables whose latent variables are
explanatory ofyj, sayXj. We search for two unit vectorsaj andaj such that the squared
correlation coefficient betweenXjaj andXjaj is a maximum.

As well known in canonical correlation analysis,aj andaj are the eigenvectors re-
spectively ofX′

jXj(X
′
j
Xj)

−1X′
j
Xj and(X′

j
Xj)

−1X′
j
Xj(X

′
jXj)

−1X′
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to the largest common eigenvalueρ2
ji: the squared correlation coefficient betweenXjaj

andXjaj.
In the special case wherepj = 1, that isXj reduces to a column vector,xj, we have
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′
j
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−1, wherec is a proper



constant. Thenρ2
jj

is the multiple correlation coefficient between the variablexj and the

manifest variables of thej
th

(exogenous) block.
In a more general situationR2

(
yj;yj1,yj2, . . . ,yjkj

)
≤ ρ2

j , whereρj is the first
canonical correlation of the canonical analysis of matrixXj and

[
Xj1,Xj2, . . . ,Xjkj

]
.

When in the above expression the equality sign holds for allj, endogenous latent vari-
ablesyj are maximally correlated to their adjacent latent variables. Then, two alternative

normalized versions of the second term ofG̃F
2

are:
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By combining equations (3) and (5) or equations (4) and (6) we obtain two differ-
ent normalized goodness-of-fit indexes yielding the same result and ranging between 0
and 1: GF 2 = T 2

11T
2
21 = T 2

12T
2
22 . The geometric mean ofT11 andT21, namedGF (i.e.

Goodness-of-Fit index), is used because it can be interpreted similarly to theR2 index

in a regression framework. In the following, we refer tôGF and toĜF
2

as the sample
estimates of, respectively,GF andGF 2.

4. A non–parametric procedure for validating the index

If we are interested in the interval estimate ofGF , or GF 2, we can apply a non–
parametric procedure. Let̂FX be the empirical cumulative distribution function (cdf)
of X = [X1,X2, . . . ,XJ ]. In the following we directly considerGF but all statements
can be well referred toGF 2.

1. DrawB random samples from̂FX and forb = 1, 2, . . . , B computeĜF
(b)

, i.e. for
each bootstrap sample, perform a PLS estimation of the same structural model that
yieldedĜF and compute the corresponding index.

2. The cdf of the Monte Carlo approximationΦ
(B)

ĜF
of the bootstrap distribution of̂GF

is yielded by the bootstrap estimateŝGF
(b)

. The distribution is estimated under the
hypothesisGF = ĜF and approximated by means ofB bootstrap samples.

A confidence interval with nominal confidence level1 − 2α is [Φ
(B)

ĜF
(α), Φ

(B)

ĜF
(1 − α)]

i.e. the100α% and the100(1 − α)% percentiles ofΦ(B)

ĜF
. In order to heuristically verify

whether the observed̂GF is significantly greater than 0, we can check if the above interval
does not include 0.

In order to perform a non–parametric hypothesis testing onGF we need to set hy-
potheses on one or more coefficients of the structural model:

H0 : βij = 0 vs. H0 : βij 6= 0 (7)

whereβij is the PLS coefficient in the structural equation linkingyi to yj.



In order to perform a non–parametric hypothesis testing we need to properly transform
X and define an empirical cdf̂FX∗ such that the null hypothesis H0 holds. LetX∗

j =

Xj−Xi(X
′
iXi)

−1X′
iXj be the part ofXj not due toXi; finally X∗ = [X1,X2, . . . ,Xj−1,

X∗
j ,Xj+1, . . . ,XJ ].

Similarly to the cdfΦ(B)

ĜF
, a Monte Carlo,Φ(B)

H0
, approximation of the bootstrap cdf

of ĜF under the null hypothesis in (7), can be estimated. According to a nominal sig-
nificance level100α% H0 can not be rejected ifΦ(B)

H0
(1 − α) ≥ ĜF . Furthermore, the

achieved significance level (orp-value) of the test can be computed as the proportion of

B bootstrap estimateŝGF
(b)

lower than the observed̂GF . As a rule of thumb, ap-value
less than or equal to 0.025 gives a strong evidence against H0.

Notice that if the density distribution functions corresponding toΦ
(B)

ĜF
or Φ

(B)

H0
are not

symmetric, bias–corrected and accelerated (BCa) bootstrap percentiles can be computed,
Efron and Tibshirani (1993).

By generalizing the hypothesis in (7) to all coefficients of all structural equations, the
hypothesisGF = 0 againstGF > 0 can be tested.

5. Application to real data and conclusions

The suggested goodness–of–fit index has been applied to Russet data by referring to
the structural model shown in Tenenhaus (1999). The analyzed data consist of 3 manifest
variable blocks.X1: GINI, FARM and Ln(RENT+1);X2: Ln(GNPR) and Ln(LABO);
X3: Exp(INST-16.3), Ln(ECKS+1), Ln(DEAT+1), DEMOSTAB, DEMOINSTAB and
DICTATUR. The measurement model is defined as:

x1h = π1hξ1 + ε1h, h = 1, 2, . . . , 3
x2h = π2hξ2 + ε2h, h = 1, 2
x3h = π3hξ3 + ε3h, h = 1, 2, . . . , 6

while the structural model is given by:ξ3 = β31ξ1 + β32ξ2 + ε3. Finally, mode A for
external estimation and factorial scheme for internal estimation are chosen.

The global index isĜF
2

= 0.989 × 0.610 = 0.603 and, consequently,̂GF = 0.778
meaning that the model is able to take into account 78% of the achievable fit.

The obtained results are shown to be statistically significant by the non–parametric
procedure suggested above.

The proposed normalized index can be well applied also to compare performances
yielded by PLS and LISREL when both feasible on the same model.
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