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Abstract: This work deals with multivariate stochastic volatility models that account for
time-varying stochastic correlation between the observable variables. We focus on the
bivariate models. A contribution of the work is to introduceBeta and Gamma autoregres-
sive processes for modelling the correlation dynamics. Another contribution of our work
is to allow the parameter of the correlation process to be governed by a Markov-switching
process. Finally we propose a simulation-based Bayesian approach, called regularised
sequential Monte Carlo. This framework is suitable for on-line estimation and the model
selection.
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1. Introduction

After the introduction of theDynamic Conditional Correlation(DCC) model due to En-
gle (2002), the literature mainly focuses on the application of a time-varying correlation
structure to the class of multivariate GARCH models. For an updated review on multi-
variate GARCH models we refer to Bauwenset al. (2006).
In stochastic volatility modeling, the results obtained inthe univariate case (see for exam-
ple Taylor (1986, 1994) and Jacquieret al.(1994)) have been extended to the multivariate
case (see Harveyet al. (1994), Aguilar and West (2000) and Chibet al. (2006)) by con-
sidering a constant correlation structure. See also Asai and McAleer (2006a) and Asai
et al. (2006) for an updated review onMultivariate Stochastic VolatilityMSV.
Recent studies start dealing with time-varying correlation in MSV models. The models
due to Philipov and Glickman (2006) and Gourierouxet al.(2004) allow for time-varying
variances and covariances. However the stochastic correlation structure is implicitly de-
termined by the dynamics of variances and covariances, thusa direct modeling of the
correlation between asset returns is not possible. In this work we follow instead an al-
ternative route. We treat variances and correlations separately. This allows us to better
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describe the dynamics of the two set of variables and the causality relations between them.
For an updated discussion on the different ways of introducing time-varying correlation
into MSV models see Asai and McAleer (2006b, 2005).
In our stochastic-correlation MSV models both the variancevector and the correlation ma-
trix are stochastic unobservable (or latent) variables. The use of latent variables allows a
more flexible modeling of the volatility and correlation dynamics than the DCC-GARCH
approach. Unobservable components provide a natural setting to introduce exogenous
explanatory variables in the correlation and variance dynamics. Nevertheless stochastic
correlation MSV models are difficult to estimate and a suitable inference approach is the
object of many latter works.
The first aim of our work is to propose new classes of stochastic models for represent-
ing the correlation dynamics. We propose the use ofGamma Autoregressive Processes
due to Gourieroux and Jasiak (2006) and of theBeta Autoregressive Processes(BAR),
which have the advantage to be naturally defined on a bounded interval. BAR are weak
autoregressive processes and, similarly to the Gamma autoregressive, can accomodate
various nonlinearities in the correlation dynamics. Our approach borrows from the ear-
lier Bayesian literature on hazard rate modeling (see Nieto-Barajas and Walker (2002)),
and on the construction of general autoregressive processes (see Mena and Walker (2004)
and Pittet al. (2002)), but represents an original application to the dynamic correlation
modeling.
Another contribution of the paper is to introduce a new classof models which account for
sudden changes of regimes in the correlation dynamics. The proposed stochastic correla-
tion models can be extended by considering heavy-tailed observation noise. We propose
skewed Student-t distributions, which allow for different magnitude of kurtosis and skew-
ness in each direction of the observation space.
The last aim of our work is to apply a full Bayesian approach tothe sequential estima-
tion of the unknown parameter and to the nonlinear filtering problem which arises when
estimating the hidden states. The Bayesian inference approach is powerful in dealing
with the estimation of nonlinear models (Jacquieret al. (1994)). The existing literature
on Bayesian inference for MSV and for dynamic correlation models mainly focused on
traditional MCMC methods (see Asai and McAleer (2006a)). Inthe Bayesian framework,
alternative estimation methods have been recently proposed. These methods rely upon a
convenient nonlinear state-space representation of the econometric model of interest and
uponSequential Monte Carlo(SMC) techniques also calledParticle Filter (PF). SMC
allows to deal with nonlinear state-space models and is particularly suitable for on-line
applications (see Doucetet al. (2001), Pitt and Shephard (1999), Polsonet al. (2002,
2003)).
The work is organised as follows. Section 2 first defines bivariate stochastic volatility
models. Then stochastic correlation models, such as Gamma and Beta autoregressive
processes are introduced. Finally the Markov-switching correlation is considered. Section
3 presents the particle filter approach to the on-line estimation of the latent variables and
the unknown parameters and for the selection of the model. Section 4 concludes.

2. Markov-Switching Stochastic-Correlation

Let yt = (y1t, y2t)
′ ∈ R

2 be a2-dimensional vector of observable variables andht =
(h1t, h2t)

′ ∈ R
2 a2-dimensional vector of stochastic log-volatilities. Denote the stochastic



correlation matrix byΩt and letΛt = diag{exp(h1t/2), exp(h2t/2)} be a diagonal matrix
with standard deviations on the main diagonal. The time-varying variance-covariance
matrix of the observable factorises as follow:Σt = ΛtΩtΛt. Note that this decomposition
allows us to model volatilities and correlations separately.
The proposed multivariate stochastic volatility model is

yt = Ayt−1 + Σ
1/2
t εt, εt ∼ N2 (0, Id2) (1)

ht+1 = c +Bht + Ξ1/2ηt, ηt ∼ N2 (0, Id2) (2)

whereεt ⊥ ηs, ∀ s, t, which denotes the absence of leverage.Idn represents then-
dimensional identity matrix andNn (0, Idn) then-variate standard normal.Ξ1/2 denotes
the Cholesky decomposition ofΞ, which represents the variance-covariance matrix of the
log-volatility process and captures instantaneous spill-over effects across asset volatilities.
The autoregressive coefficientB is constant and determines the causality structure (spill-
over effects) in the log-volatility. In the following we focus on the dynamic of the sto-
chastic correlation.
Let (st)t≥0 be a univariate Markov-switching process with values inE = {1, . . . , L} ⊂ N

and transition density

P(st+1 = i|st = j) = pij , with i, j ∈ E. (3)

Let (ψt)t≥0 be a sequence of i.i.d. white noises. In this work we assume:ψt ⊥ εs and
ψt ⊥ ηs, ∀ s, t, but the proposed model and inference framework can be extended to
include dependence between those processes.
The(i, j)-th element of the stochastic correlation matrixΩt is defined as follows

ρij,t = (1 − δi(j))φ(ωt) + δi(j) (4)

ωt+1 = g(ωt, st+1, ψt) (5)

with i, j ∈ {1, 2} andφ : R → [−1,+1] a smooth function. In the previous equation
ωt is a latent process (customarily calledtransformed correlation process) driving the
correlation between observable processes. The functiong : (R × E × R) → R defines
the transition dynamics ofωt.
In the following examples we discus some stochastic correlation models. In particular we
focus on some alternative ways to specify the stochastic correlation process. We show also
how to introduce a switching-regimes process in the dynamics of the correlation process.

Example 1- (Switching Gaussian Autoregressive)
We assume the transformed correlation processωt follows a Markov-switching first order
Gaussian autoregressive process

ωt+1 = ω̄st+1
+ λst+1

ωt + γ1/2
st+1

ψt, ψt ∼ N (0, 1), (6)

with γk > 0, ∀k. Note that our model has the pure Markov-switching correlation process
as a special case, whenλk = 0 andγk = 0 ∀k.
In order to obtain a process which lives in the interval[−1,+1], we could apply toωt the
Fisher’s transform

φ(ωt) =
exp(ωt) − 1

exp(ωt) + 1
,

. A simulated example of Markov-switching stochastic-correlation is given in Fig. 1.



Figure 1: Simulated bivariate stochastic volatility model with Markov-switching sto-
chastic correlation. Top left and right simulated observable process assumingA =
diag{0.05, 0.05}. In the second line simulated stochastic log-volatility process assuming
c = (0.001, 0.001),B = diag{0.95, 0.97} andΞ = diag{0.1, 0.2}. The bottom-left chart
shows the stochastic correlation process (continuous line) with parameters:λ = 0.1,
γ = 0.04, ω̄1 = −0.8, ω̄2 = 0, ω̄3 = 0.8 and the recursive estimation of the correlation
(dashed line) with a moving window of 30 observations. The bottom-right chart shows
the scatter plot of the observations.
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In these models, even if the dynamic of the latent processωt is a linear one, conditionally
on st, the proposed transforms produce nonlinearities in the dynamic of the correlation
process making the inference and forecast more difficult. For example, when the Fisher’s
transform is used, the first conditional moment is

E(ρt|st, ρt−1) =

∞
∑

k=0

k
∑

j=0

(

k
j

)

(−1)2k+1−j

2k+1
exp{ω̄st

j + j2γ/2}

(

1 + ρt−1

1 − ρt−1

)jλ

, (7)

which is nonlinear in the lagged value of the correlation process. A proof is in Amisano
and Casarin (2007).

�

Example 2- (Switching Gamma Autoregressive)A class of model which could replace
the Gaussian autoregressive is the autoregressive Gamma process due to Gourieroux and
Jasiak (2006). We propose a Markov-switching Autoregressive Gamma of the first order
(MS-ARG(1)), with transition dynamics

ωt+1 ∼ Ga
(

δ, αst+1
ωt, βst+1

)

(8)



Figure 2: Simulated bivariate stochastic volatility model with Markov-switching sto-
chastic correlation. Top left and right simulated observable process assumingA =
diag{0.05, 0.05}. In the second line simulated stochastic log-volatility process assuming
c = (0.001, 0.001),B = diag{0.95, 0.97} andΞ = diag{0.1, 0.2}. The bottom-left chart
shows the stochastic correlation process (continuous line) with parameters:α1 = 1.8,
α2 = 0.111, α3 = 0.009, β = 100, γ1 = 100, γ2 = 11.11, γ1 = 5.747 and the recursive
estimation of the correlation (dashed line) with a moving window of 30 observations. The
bottom-right chart shows the scatter plot of the observations.
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with δ, αk, βk ∈ R ∀k and whereGa(δ, α, β) denotes the noncentered gamma distribution.
In order to obtain a stochastic correlation process we can transformωt as follow: ρt =
1 − exp(−ωt). The first conditional of the correlation process is

E(ρt+1|ρt, st+1) = 1 −
(

(1 + βst+1
)−δ

(

ρ
αst+1

βst+1
/(1+βst+1

)

t − 1
))

(9)

that follows by conditioning onst+1 and applying Proposition 4..2 in Appendix B.

�

Example 3- (Switching Beta Autoregressive)
As alternative to the Gaussian and Gamma autoregressive processes we could use a sto-
chastic process naturally defined on[0, 1]. We propose a Markov-switching Beta Autore-
gressive Process of the first order (MS-BAR(1)), with transition dynamics

ωt+1 ∼ Be
(

αst+1
+ γst+1

ωt, βst+1
+ γst+1

(1 − ωt)
)

, (10)

with αk, βk, γk ∈ R ∀k and whereBe(a, b) denotes a beta distribution of the Type I with
a, b > 0. ForK = 1 we obtain the time-homogeneous BAR(1) process given in Definition
4..2, Appendix C. See also Amisano and Casarin (2007) for further details.



Figure 3: Simulated bivariate stochastic volatility model with Markov-switching stochas-
tic correlation and skewed Studentt observations. Left column shows the observations
and the scatter plot for a skewed Student-t with ξ = (0.5, 0.5)′ and ν = (30, 80)′, the
right column for a skewed Student-t with ξ = (0.5, 1.4)′ andν = (23, 23)′.
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Following our definition of BAR(1) process and applying Proposition 4..4 in Appendix
C, the first two conditional moments are easily found

E(ωt+1|ωt, st+1) =
αst+1

+ γst+1
ωt

αst+1
+ βst+1

+ γst+1

(11)

Var(ωt+1|ωt, st+1) =
αst+1

+ γst+1
ωt

αst+1
+ βst+1

+ γst+1
+ 1

βst+1
+ γst+1

(1 − ωt)

(αst+1
+ βst+1

+ γst+1
)2
. (12)

The BAR(1) process has a nonlinear dynamics, but the conditional mean of the process
depends linearly on the lagged value of the process. This makes easier the interpretation of
the parameter of process. Moreover the BAR(1) shares some properties with the Gamma
processes and can capture complex nonlinear dynamics. Its conditional heteroscedas-
ticity is a quadratic function of the lagged value and its over- and underdispersion is
time-varying (see Appendix C). Finally note that if the stationarity conditions given in
Appendix C are satisfied, the three parameter of the process determine the serial depen-
dence: corr(ωt, ωt−r) = (γ(γ + β + α)−1)r.
We apply the linear transformφ(x) = 1− 2x in order to obtain a processρt = φ(ωt) with
values in[−1,+1]. Note however that the class of the BAR(1) processes is closed under
linear transform. Thus all the properties discussed above apply to theρt. A simulated
example of MS-BAR(1) is in Fig. 2.

�

Example 4- (Heavy-Tails Stochastic-Correlation Models)



As alternative to the Gaussian VAR process we could use a process which account also
for skewness and kurtosis. We propose a skewed Student-t model

yt = Atyt−1 + Σ
1/2
t εt, εt ∼ SkT2 (0, Id2, ν, ξ) (13)

ht+1 = c +Bht + Ξ1/2ηt, ηt ∼ N2 (0, Id2) (14)

whereSkTn (0, Idn, ν, ξ) is then-variate skewed Student-t with ν = (ν1, . . . , νn)′ de-
grees of freedom vector and skewness parameterξ = (ξ1, . . . , ξn)

′. For a definition of
multivariate skewed Student-t distribution see Azzalini and Dalla Valle (1996), Branco
and Dey (2001) and Sahuet al. (2003). In this work we adopt the definition due to
Ferreira and Steel (2003) (but see also Bauwens and Laurent (2002) for a quite similar
definition). Their constructive method for skewed Student-t makes the simulation from
this distribution simple. The existence of the moments is guaranteed by the existence of
the moments of the underlying univariate distributions. Finally the resulting multivariate
distribution accounts for heterogenous components, i.e. it allows for different magnitudes
and directions of kurtosis and skewness. Two simulated examples of skewed Student-t
observations are given in Fig. 3.

�

3. Bayesian Inference

3.1 Estimation of Latent Variables and Parameters

In the following we deal with the inference problems in the nonlinear dynamic models
presented in previous sections. We follow the nonlinear filtering approach. As suggested
by Berzuiniet al.(1997) we include the parameters into the state vector and then, follow-
ing Liu and West (2001), we apply aRegularised Auxiliary Particle Filter(R-APF) for
filtering the hidden states and estimating the unknown parameters of the model.
We assume that the Bayesian nonlinear model is represented in a distributional state-space
form, that is defined by the following measurement, transition and initial densities

yt ∼ p(yt|xt, θt) (15)

(xt, θt) ∼ p(xt, θt|xt−1, θt−1) (16)

(x0, θ0) ∼ p(x0|θ0)p(θ0) (17)

with t = 1, 2, . . . , T . In this general and possibly nonlinear model,yt ∈ Y ⊂ R
ny

represents the observable variable,Y the observations space,xt ∈ X ⊂ R
nx the hidden

state (i.e. the latent variable) andX the state space.
We assume the transition density of the parameter vector is trivially δθt−1

(θt), whereδx(y)
denotes the Dirac’s mass centered inx. The last line shows the prior distribution on the
parameter vectorθ0 = θ, with θ ∈ Θ ⊂ R

nθ . Note that the prior distribution on the
parameter represents the Bayesian part of the model.
In the case of the three-regime models given in the previous examples,yt ∈ R

2 and
xt = (h′

t, ωt, st)
′ ∈ (R2 × R × {1, 2, 3}). The parameter vectors in examples 1 and 3

areθ = ((a11, a22)
′, c′, (b11, b22)

′, vec{Ξ}′, λ, γ, ω̄1, ω̄2, ω̄3)
′ andθ = ((a11, a22)

′, c′,
(b11, b22)

′, vec{Ξ}′, λ, α1, α2, α3, β, γ1, γ2, γ3)
′ respectively. We denote withvec the

matrix operator, which stacks into a vector the columns of a given matrix.



Let us definezt = (x′
t, θ

′
t)

′, Z = X × Θ andzs:t = (zs, zs+1, . . . , zt). The optimal
prediction, filtering and smoothing densities, for the model in Eq. (15), (16) and (17), are

p(zt+1|y1:t) =

∫

Z

p(xt+1|xt, θt+1)δθt
(θt+1)p(zt|y1:t)dzt (18)

p(yt+1|y1:t) =

∫

Z

p(yt+1|zt+1)p(zt|y1:t)dzt+1 (19)

p(zt+1|y1:t+1) =
p(yt+1|xt+1, θt+1)p(xt+1|xt, θt+1)δθt

(θt+1)

p(yt+1|y1:t)
(20)

p(zs|y1:t) = p(zs|y1:s)

∫

Z

(zs+1|zs)p(zs+1|y1:t)

p(zs+1|y1:t)
dzs+1 (21)

with s < t.
The analytical solution of the general stochastic filteringproblem described in Eq. (18)-
(21) is known in only few cases. Inference problems in nonlinear and/or non-Gaussian
state-space models are usually solved by introducing some approximations. In this work
we bring into actionParticle Filters (PF) (Doucetet al. (2001)). In particular we apply
the regularised particle filters due to Liu and West (2001) and Mussoet al. (2001).
Let (zi

0, w
i
0) be a weighted sample from the prior distribution given in Eq.(17). The sam-

ple is also called particle and the collection ofN samples,{zi
0, w

i
0}

N
i=1 is called particle

set. Assume that at timet a particle set{zi
t, w

i
t}

N
i=1 is approximating the density in Eq.

(20), then the density in Eq. (18) is approximated

pN(zt+1|y1:t) ∝
N

∑

i=1

1

N |H i
t |d
wi

tp(zt+1|z
i
t)KHi

t
(zt+1 − zi

t) (22)

pN(yt+1|y1:t) ∝
N

∑

i=1

1

N |H i
t |

d
wi

tp(yt+1|xt+1, θt+1)KHit
(zt+1 − zi

t) (23)

pN(zt+1|y1:t+1) ∝
N

∑

i=1

1

N |H i
t |d
wi

tp(yt+1|zt+1) (24)

whereKH(x) = K(H−1x) is a multivariate Gaussian kernel andH a p.d. scale matrix
(bandwidth). |H| denotes the determinant ofH. Note that with respect to Liu and West
(2001), we consider a matrix-variate bandwidths to allow for different jittering dimension
in each direction of the augmented state space. See Amisano and Casarin (2007) for
details.

3.2 Number of Regimes

Let Lt represent the current number of regimes. Following Chopin Chopin (2001) and
Chopin and Pelgrin Chopin and Pelgrin (2004), the state vector is augmented with the
auxiliary variable,mt+1 defined as follows

mt+1 = max{Lt+1, mt} (25)

This augmented state allow us to estimate sequentially the number of regimes. See
Amisano and Casarin (2007) for further details.



4. Conclusion

We introduce some new Markov-switching stochastic-correlation models. For the infer-
ence, a simulation-based Bayesian approach is considered,which relies upon sequential
Monte Carlo algorithms. SMC is particularly suitable for on-line model selection and
joint estimation of the latent variables and the parameters. The on-line context allows us
to evaluate sequentially also risk and the performance of the optimal portfolio when the
stochastic correlation is governed by a Markov-switching process.
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Appendix A - Gaussian AR(1)

We find the conditional and unconditional first order momentsfor a transformed AR(1)
process, when applying the Fisher’s transform.

Proposition 4..1. Letωt follow the AR(1) process

ωt = ω̄ + λωt−1 + γ1/2ψt, ψt
i.i.d
∼ N (0, 1) (26)

andFt = σ({ωu}u≤t) be the sigma algebra generated byωt. The processρt = (exp{ωt}−
1)(exp{ωt} + 1)−1 has the following first order conditional and unconditionalmoments

1. Et−1(ρt) =
∞
∑

k=0

k
∑

j=0

(

k
j

)

(−1)2k+1−j

2k+1 exp {jω̄ + j2γ/2}
(

1+ρt−1

1−ρt−1

)jλ

;

2. E(ρt) =
∞
∑

k=0

k
∑

j=0

(

k
j

)

(−1)2k+1−j

2k+1 exp
{

j2γ
2(1−λ2)

}

.

Proof. See Amisano and Casarin (2007).

Appendix B - ARG(1) Process

Definition 4..1. The stochastic processωt is a time-homogeneous Autoregressive Gamma
Process (ARG(1)) with invariant parametersα, β, δ ∈ R if and only if

ωt+1 ∼ Ga (δ, αωt, β) (27)

whereGa(δ, α, β) is a noncentered gamma distribution.

The transition density of a ARG(1) process is

f(y|x) ∼ exp

(

y

β

) ∞
∑

k=0

(

yδ+k−1

βδ+kΓ(δ + k)

exp(−αk)

k!

)

I(y)(0,∞) (28)

with Γ(c) denoting the gamma function.

Proposition 4..2. Letωt follow a ARG(1) process. The conditional Laplace transformis

Et−1 (exp(−uωt)) = (1 + βu)δ exp

(

−ωt−1
αβu

1 + βu

)

(29)

Proof. See Gourieroux and Jasiak Gourieroux and Jasiak (2006).

Appendix C - BAR(1) Process

B.1 - BAR(1) Stationarity conditions

Definition 4..2. The stochastic processωt is a time-homogeneous Beta Autoregressive
Process (BAR(1)) with invariant parametersα, β, γ ∈ R if and only if

ωt+1 ∼ Be (α + γωt, β + γ(1 − ωt)) (30)

whereBe(c, d) is a central beta distribution of the first Type with parameters c, d > 0.



The transition density of a BAR(1) process is the central Beta density

f(y|x) ∼
1

B(α + γx, β + γ(1 − x))
yα+γx−1(1 − y)β+γ(1−x)−1

I[0,1](y), (31)

with B(c, d) denoting the Beta function defined asB(c, d) = Γ(c)Γ(d)/Γ(c+ d).
Let Ft = σ({ωs}s≤t) be theσ-algebra generated byωt and denote withEt(·) = E(·|Ft)
the conditional expectation operator. The conditional andunconditional moments and the
serial dependence of the BAR(1) are given in the following.

Proposition 4..3.Letωt follow a BAR(1) process. The first two conditional and uncondi-
tional noncentral moments of a BAR(1) are

1. Et−1(ωt) = (α + γωt−1)(α+ β + γ)−1;
2. Et−1(ω

2
t ) = (α+γωt−1)(α+γωt−1+1)

(α+β+γ)(α+β+γ+1)
;

3. E(ωt) = α(α + β)−1;

4. E(ω2
t ) = (α2+α)(α+β)+αγ(2α+1)

(α+β)((α+β+γ)(α+β+γ+1)−γ2 )
.

Proof. See Amisano and Casarin (2007).

Proposition 4..4.Letωt follow a BAR(1) process. The autocorrelation of orderr, ρ(r) of
a BAR(1) isρ(r) = (γ/(α+ β + γ))r.

Proof. See Amisano and Casarin (2007).

B.2 - Overdispersion properties of the BAR(1) process

Another feature of the proposed BAR(1) process is that it canbe both over- or underdis-
persed as showed in the following propositions.

Proposition 4..5. The first two conditional moments of a stationary BAR(1) process are

Et−1(ωt) =
(α + γωt−1)

(α + β + γ)
(32)

Vt−1(ωt) =
(α + γωt−1)

(α + β + γ + 1)

(β + γ(1 − ωt−1))

(α + β + γ)2 . (33)

Proposition 4..6.For a stationary homogeneous BAR(1) with parametersα, β > 0, γ < 0
there exists conditional overdispersion,Vt−1(ωt) > (Et−1(ωt))

2, if and only ifωt−1 ∈
(ω(1), ω(2)) for (γ > −β−α), whereω(1) = (γ(2+α+β+γ))−1 (β + γ − α(1 + β + γ + α))
andω(2) = −α/γ.

Proof. See Amisano and Casarin (2007).


